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A model of two-dimensional damped harmonic oscillator affected by time dependent magnetic field
in time dependent noncommutative space was studied in an earlier communication [Phys. Scr. 96
(2021) 125224]. In this article, the same model is considered to show that, for a suitable explicit
choices of damping and magnetic field, it is possible to import a periodicity to the time evolution
of the energy expectation value of the model system.

I. INTRODUCTION

The study of quantum harmonic oscillators with
time dependent parameters is quite popular amongst
theoreticians1. The effect of damping on the time depen-
dent quantum oscillator has also been well investigated2.
The system has also been studied in the non commuta-
tive framework by few studies3 including those by us4,5.
The effect of an external magnetic field on the damped
system has been analysed by us in an earlier work6. We
have seen through this study that in the presence of a
constant, exponentially decaying, exponentially growing
and rationally decaying external field, the expectation
value of energy either remains constant with time or de-
creases or initially decreases then increases with time.
So, in the present work we intend to extend our earlier
mentioned study to analyse the time evolution of the en-
ergetics of the damped oscillator in the presence of a pe-
riodic external magnetic field. We intend to investigate
whether the periodicity of the external field is reflected
in the energetics of the system.

In this communication we set up the Hamiltonian for
our time dependent damped quantum harmonic oscilla-
tor in non commutative framework in the presence of an
externally applied magnetic field in Section II. In Sec-
tion III we solve for the eigenstate of the Hamiltonian
using Lewis Invariant technique. In Section IV we have
looked into explicit solutions for our system. In Section
V we have studied the energetics of the system in terms
of energy expectation values. In Section VI we finally
summarize our results.

II. CONSIDERING THE TWO-DIMENSIONAL
HARMONIC OSCILLATOR IN THE PRESENCE
OF MAGNETIC FIELD IN NONCOMMUTATIVE

SPACE

The model Hamiltonian considered in our earlier
communication6 to study a two dimensional damped har-
monic oscillator in the presence of external magnetic field
in non commutative space reads,

H(t) =
f(t)

2M

[
(P1 − qA1)2 + (P2 − qA2)2

]
+
Mω2(t)

2f(t)
(X1

2 +X2
2) ; (1)

where f(t), the damping factor is formed as,

f(t) = e−
∫ t
0
η(s)ds; (2)

where η(s) defines the coefficient of friction and Ai de-
notes the vector potential of a time varying external mag-
netic field B(t) chosen in Coulomb gauge as,

Ai = −B(t)

2
εijX

j . (3)

It should also be noted that ω(t) denotes the time varying
angular frequency of the oscillator and M is the constant
mass of the oscillator. In order to express the Hamilto-
nian (Eqn.(1)) in commutative space we relate the NC
coordinates (Xi, Pi) to the commutative space variables
(xi, pi) by the standard Bopp-shift relations7 which are
mentioned below in natural unit ~ = 1.

X1 = x1 −
θ(t)

2
p2 , X2 = x2 +

θ(t)

2
p1 , (4)

P1 = p1 +
Ω(t)

2
x2 , P2 = p2 −

Ω(t)

2
x1 . (5)
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Hence the Hamiltonian in terms of commutative variables
(xi, pi) is formed as,

H =
a(t)

2
(p1

2+p2
2)+

b(t)

2
(x1

2+x2
2)+c(t)(p1x2−p2x1) ;

(6)
where the time dependent coefficients a(t), b(t) and c(t)
are found as,

a(t) =
f(t)

M
+
qB(t)f(t)θ(t)

2M
+

[
q2B2(t)f(t)

16M
+
Mω2(t)

4f(t)

]
θ2(t),

b(t) =
q2B2(t)f(t)

4M
+
Mω2(t)

f(t)
+
qB(t)f(t)Ω(t)

2M
+
f(t)Ω2(t)

4M
,

c(t) =
1

2

[
qB(t)f(t)

M

(
1 +

θ(t)Ω(t)

4

)
+

Ω(t)f(t)

M

+

(
q2B2(t)f(t)

4M
+
Mω2(t)

f(t)

)
θ(t)

]
. (7)

III. EIGENSTATE OF THE HAMILTONIAN:
LEWIS INVARIANT TECHNIQUE

As we intend to follow the approach introduced by
Lewis et.al. 1 to solve a time dependent Hamiltonian, we
find a time-dependent hermitian invariant operator I(t)
corresponding to the Hamiltonian H(t) shown in Eqn.(6).
According to that well known method of invariant , if the
eigenfunctions of I(t) is denoted as |φ〉 i.e.

I(t) |φ〉 = ε |φ〉 ; (8)

where ε is a time independent eigenvalue of I(t) corre-
sponding to |φ〉, we can correlate the eigenstates of H(t),
|ψ〉 with |φ〉 by choosing a suitable time dependent phase
factor, known as Lewis phase in literature. Hence the
eigenstate of H(t) i.e. |ψ〉 can be expressed in terms of
|φ〉 and the phase factor Θ(t) in the following manner.

|ψ〉 = eiΘ(t) |φ〉 ; (9)

where Θ(t), the Lewis phase is a real function of time
and satisfies the following relation,

Θ̇(t) = 〈φ| i∂t −H(t) |φ〉 ; (10)

where dot denotes the first time derivative.
The time dependent Lewis invariant operator I(t) cor-

responding to the Hamiltonian H(t) satisfies the follow-
ing relation,

dI

dt
= ∂tI +

1

i
[I,H] = 0. (11)

As argued by Lewis et. al.1, the hermitian invariant I(t)
has explicit time dependence and it is to be of the same
homogeneous quadratic form in the canonical variables as
the Hamiltonian. Thus, the preliminary structure of the

time dependent invariant in two dimension is assumed to
take the following form in natural unit ~ = 1 ,

I(t) = α(t)(p1
2+p2

2)+β(t)(x1
2+x2

2)+γ(t)(x1p1+p2x2) ;
(12)

where α(t), β(t) and γ(t) possess some arbitrary func-
tional form of time. Substituting the Eqn.(12) in the
Eqn.(11) and equating the coefficients of the canonical
variables, the following relations are found as,

α̇(t) = −a(t)γ(t) , β̇(t) = b(t)γ(t) ,

γ̇(t) = 2 [ b(t)α(t)− β(t)a(t) ] (13)

Next we make a parametrization α(t) = ρ2(t) and sub-
stitute it in the first and third relation in the Eqn.( 13)
as it enables us to express the three time dependent co-
efficients in terms of a single time dependent parameter
ρ(t). Hence the other two parameters take the form in
terms of ρ(t) as,

γ(t) = − 2ρρ̇

a(t)
, β(t) =

1

a(t)

[
ρ̇2

a(t)
+ ρ2b+

ρρ̈

a(t)
− ρρ̇ȧ

a2

]
.(14)

In order to simplify the form of β we substitute it in the
second relation in Eqn.(13). This in turn leads to the
following non-linear differential equation,

ρ̈− ȧ

a
ρ̇+ abρ = ξ2 a

2

ρ3
; (15)

which is known as Ermakov-Pinney equation having a
dissipative term2,8,9 and ξ2 is a constant of integration.
As our Hamiltonian does not differ with the same in Dey
et al 2 , the obtained EP equation has similar form to
that established by them 2. However, it should be men-
tioned that the explicit form of the time-dependent coef-
ficients in the Hamiltonian are different due to the exis-
tence of damping and external magnetic field.
Next the EP equation provides us the simplest form of β
as,

β(t) =
1

a(t)

[
ρ̇2

a(t)
+
ξ2a(t)

ρ2

]
. (16)

Next, the explicit form of α, β and γ in terms of ρ(t)
establish the following expression for I(t) as,

I(t) =ρ2(p1
2 + p2

2) +

(
ρ̇2

a2
+
ξ2

ρ2

)
(x1

2 + x2
2)

− 2ρρ̇

a
(x1p1 + p2x2). (17)

Since we intend to solve the model system in polar coor-
dinate system, the Lewis invariant in terms of the polar
coordinate variables is as follows,

I(t) =
ξ2

ρ2
r2 +

(
ρpr −

ρ̇

a
r

)2

+
(ρpθ
r

)2

−
( ρ

2r

)2

(18)
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The above form of the invariant produces the solution of
the Hamiltonian (as found from2) as,

ψn,m−n(r, θ, t) = eiΘn,m−n(t)φn,m−n(r, θ)

= λn
(iρ)

m

√
m!

exp

[
im

∫ t

0

(
c(T )− a(T )

ρ2(T )

)
dT

]

× rn−me
i(m−n)θ−

a(t)− iρρ̇
2a(t)ρ2

r2

× U

(
−m, 1−m+ n,

r2

ρ2

)
; (19)

where λn is given by

λ2
n =

1

πn!(ρ2)
1+n ; (20)

and n and m are non negative integers.

Here, U

(
−m, 1−m+ n,

r2

ρ2

)
is known as Tricomi’s

confluent hypergeometric function10,11 and the study by
Dey et al2 also reveals the form of the Lewis phase as,

Θn , l(t) = (n + l )

∫ t

0

(
c(T )− a(T )

ρ2(T )

)
dT

= m

∫ t

0

(
c(T )− a(T )

ρ2(T )

)
dT ; (21)

where l is an integer such that n+ l = m > 0.

IV. EXPLICIT SOLUTION FOR DAMPED
OSCILLATOR WITH MAGNETIC FIELD IN

NONCOMMUTATIVE SPACE

Here the solution of the EP equation (considering ξ2 =
1 ) under a special physical condition is discussed and the
explicit form of the above solution along with the Lewis
phase will be calculated under such circumstances.

A. The exponential solution set of EP equation

The simplest kind of solution set of EP equation is
found by Dey et al in their work2 and those are found
to be varying exponentially with respect to time. The
exponentially decaying set of EP equation is given by
the following relations,

a(t) = σe−Γ t , b(t) = ∆eΓ t , ρ(t) = µe−Γ t/2; (22)

where σ,∆, µ are arbitrary constants. Substitution of
the above solution in the EP equation (Eqn.(15)) gen-
erates the following constraint relation among the con-
stants used in EP solution.

µ4 =
4ξ2σ2

4σ∆− Γ2
. (23)

B. Explicit form of eigenfunction of the Lewis
invariant and Lewis phase

The eigenfunction of the invariant operator I(t),
φn,m−n(r, θ), for the exponential solution set (as calcu-
lated in our earlier publication4,6) is given by,

φn,m−n(r, θ) = λn
(iµe−Γt/2)

m

√
m!

rn−me
i(m−n)θ−

2σ + iµ2Γ

4σµ2e−Γt
r2

U

(
−m, 1−m+ n,

r2eΓt

µ2

)
, (24)

where λn is given by

λ 2
n =

1

π n! [µ2 exp (−Γt)]1+n
. (25)

In order to calculate the NC parameters explicitly we
need to choose some explicit form of the damping factor
i.e. f(t), angular frequency i.e. ω(t) and the external
magnetic field i.e. B(t). Hence we preselect

f(t) = e−Γ t, ω(t) = ω0, B(t) = B0 e
Γtsin(Γt+ χ) . (26)

Substituting the exponential form of a(t) and b(t) and the
above parameters in the first two relations of Eqn.(7), the
NC parameters take the form as,

θ(t) =
8MqB0 e

−Γ t

q2B2
0sin

2(Γ t+ χ) + 4M2ω2
0

×

[√
σsin2(Γ t+ χ)

4M
+
ω2

0(Mσ − 1)

q2B2
0

− sin(Γ t+ χ)

2M

]
;

Ω(t) = eΓ t

[
−qB0sin(Γ t+ χ) + 2

√
M∆−M2ω2

0

]
.

(27)

Substitution of these expressions in the last relation in
Eqn.(7) finds the form of c(t) as,
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c(t) =
1

q2B2
0sin

2(Γ t+ χ) + 4M2ω2
0

[
−2qB0Mω2

0sin(Γ t+ χ)− q2B2
0sin

2(Γ t+ χ)

M

√
M∆−M2ω2

0

+

(
4M2ω2

0 + 2qB0sin(Γ t+ χ)
√
M∆−M2ω2

0

)√
q2B2

0σsin
2(Γ t+ χ)

4M
+ ω2

0(Mσ − 1)

]
+

√
∆

M
− ω2

0 . (28)

While the explicit form of c(t) contains only sinusoidal
terms , the NC parameters contain both of the exponen-
tial and sinusoidal terms.
The exact explicit form of the Lewis phase which can be
obtained by substituting the expressions of a(t), ρ(t) and
c(t) in Eqn.(21), is shown in the Appendix.

V. PERIODIC NATURE OF ENERGY
EXPECTATION VALUE CORRESPONDING TO

EXPONENTIAL EP SOLUTION

In order to study the oscillator’s behaviour with re-
spect to time , we calculate the expectation value of en-

ergy which is already found in our previous study 6 that
,

〈En,m−n(t)〉 =
1

2
(n+m+ 1)

[
b(t)ρ2(t) +

a(t)

ρ2(t)
+
ρ̇2(t)

a(t)

]
+

(n−m)

2
c(t); (29)

where c(t) follows the third relation of Eqn.(7). Substi-
tuting the Eqn.(22) and Eqn.(26) in the above relation ,
the explicit form of the energy expectation value is found
as,

〈En,−n(t)〉 = (n+ 1)µ2∆ +
n

q2B2
0sin

2(Γ t+ χ) + 4M2ω2
0

[
−2qB0Mω2

0sin(Γ t+ χ)− q2B2
0sin

2(Γ t+ χ)

M

√
M∆−M2ω2

0

+

(
4M2ω2

0 + 2qB0sin(Γ t+ χ)
√
M∆−M2ω2

0

)√
q2B2

0σsin
2(Γ t+ χ)

4M
+ ω2

0(Mσ − 1)

]
+ n

√
∆

M
− ω2

0 .

(30)

FIG. 1: A study of the variation of expectation value of energy,

scaled by 1
ω0

( 〈E〉
ω0

) in order to make it dimensionless, as we

vary Γt (again a dimensionless quantity). Here we consider
mass M=1, charge q=1, magnetic field B0=102, µ=1,∆=107,
σ=107, ω0=103 and Γ=1 in natural units. The constants n=1
and m=0. The expectation value of energy 〈E〉 is calculated
for an exponentially varying EP solution set when f(t) = e−Γ t

, ω(t) = ω0 and B(t) = B0 e
Γtsin(Γt+ χ). 〈E〉

ω0
is found to be

a periodic function of time.

It is very interesting to note that the dynamics of the
energy is completely periodic (as seen in the Fig.1) even
in the presence of damping. It happens mainly due to
the fact that the interplay between the NC parameters
and the applied magnetic field makes a perfect balance
among the exponentially increasing terms and the expo-
nentially decaying terms. Hence , the terms which remain
in the above expression are sinusoidal which are basically
periodic function with time.

VI. CONCLUSION

We now summarize our results. Here the model con-
sidered in our recent study 6 to study a two-dimensional
damped harmonic oscillator affected by an external time
varying magnetic field in time dependent noncommuta-
tive space is considered again. Then the Hamiltonian is
mapped to commutative space by the standard Bopp-
shift relations. The exact solution of the model is ob-
tained by using the well known method of Lewis in-
variant. The time dependent hermitian invariant whose
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eigenfunction relates the eigenfunction of the original
Hamiltonian, after being combined with a time depen-
dent phase factor, known as Lewis phase in literature, is
associated with a non-linear differential equation known
as the Ermakov-Pinney (EP) equation. In order to ob-
tain the explicit form of the solution of Hamiltonian, an
explicit solution set of EP equation is considered in terms
of exponential function with respect to time and the ex-

plicit form of the time dependent parameters damping
factor, angular frequency and the external magnetic field
are also chosen in terms of exponential and periodic func-
tions with respect to time. Interestingly, periodicity of
the magnetic field is reflected in the energetics of the sys-
tem as seen from the time evolution of the corresponding
energy expectation value.

VII. APPENDIX

The time dependent Lewis phase (as mentioned in section IV-B ) which is necessary to produce the eigenfunction
of the model is as follows,

Θn,l(t) =
(n+ l)ω0

Γ
√
M σ − 1

[
Mσ

{
EllipticF

(
Γ t+ χ,− q2B2

0σ

4Mω2
0(Mσ − 1)

)
− EllipticF

(
χ,− q2B2

0σ

4Mω2
0(Mσ − 1)

)}
−
{
EllipticP i

(
− q2B2

0

4M2ω2
0

,Γ t+ χ,− q2B2
0σ

4Mω2
0(Mσ − 1)

)
− EllipticP i

(
− q2B2

0

4M2ω2
0

, χ,− q2B2
0σ

4Mω2
0(Mσ − 1)

)}]

+
(n+ l)

√
M∆−M2ω2

0

Γ

 2ω0√
q2B2

0 + 4M2ω2
0

tan−1

√
2ω0qB0cos(Γ t+ χ)√

q2B2
0 + 4M2ω2

0

√
2ω2

0(Mσ − 1) +
q2B2

0σ

4M
(1− cos[2(Γ t+ χ)])

−tan−1

√
2ω0qB0cos χ√

q2B2
0 + 4M2ω2

0

√
2ω2

0(Mσ − 1) +
q2B2

0σ

4M
(1− cos[2χ])


+
i
√
σ√
M

log

iqB0

√
σ

2M
cos(Γ t+ χ) +

√
2ω2

0(Mσ − 1) +
q2B2

0σ

4M
(1− cos[2(Γ t+ χ)])

iqB0

√
σ

2M
cos(χ) +

√
2ω2

0(Mσ − 1) +
q2B2

0σ

4M
(1− cos[2(χ)])

+ (n+ l)

[√
∆

M
− ω2

0 −
σ

µ2

]
t

+
(n+ l)2Mω2

0

Γ
√
q2B2

0 + 4M2ω2
0

(
tanh−1 qB0cos(Γ t+ χ)√

q2B2
0 + 4M2ω2

0

− tanh−1 qB0cos(χ)√
q2B2

0 + 4M2ω2
0

)
− (n+ l)

√
M∆−M2ω2

0 t

M

+
(n+ l)2ω0

√
M∆−M2ω2

0

Γ
√
q2B2

0 + 4M2ω2
0

[
tan−1

(√
q2B2

0 + 4M2ω2
0

2Mω0
tan(Γ t+ χ)

)
− tan−1

(√
q2B2

0 + 4M2ω2
0

2Mω0
tan(χ)

)]
.

(31)
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matical Physics”, Birkhäuser, Basel, Switzerland, 1988.

12 V. Balakrishnan, “Mathematical Physics: Applications
and Problems” , Springer International Publishing, 2020

19AJPSA Vol 2, Issue 2


