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In this work we present a real space based method to analyse the consequence of randomness on
a model two band Hubbard Hamiltonian which represents a “± s-wave superconductor”. A iron-
pnictide superconductor has this symmetry of superconducting order parameter. Using our method
we analyse the effect of substitutional disorder on diagonal and off-diagonal terms of the Hamiltonian
of the system. Disorder in the interband intersite hopping integral is seen to kill superconductivity
in the system. Thus such randomness leads us to a paradigm beyond Anderson’s proposition for
“dirty superconductors”

I. INTRODUCTION

The exploration of “unconventional superconductiv-
ity” (superconductivity whose microscopic origin can
not be explained by BCS theory) in Fe-based super-
conductors was triggered by the discovery of Tc=26 K
in LaFeAsO1−xFx (x=0.05-0.12) in 2008 [1]. Eventu-
ally the critical temperature could be raised to 56K (for
Sm doped SrFeAsF) under high pressure [2]. The phase
diagrams for certain systems like Ba(Fe1−xCox)2As2[3]
or SmFeAsO1−xFx[4, 5] shows the coexistence of long
ranged magnetic order and superconductivity for a
narrow concentration regime. Unlike cuprates, here
atomic disorder in the superconducting Fe layer does
not suppress superconductivity. But optimum Tc is
obtained at concentration regimes where the magnetic
order is destroyed. For certain other systems like
CeFeAsO1−xFx [6] superconducting order develops only
at concentration regimes where magnetic order gets com-
pletely destroyed.

These systems have a discontinuous sign change of the
order parameter (OP) phase between bands. This OP
symmetry was analysed first for LaFeAsO1−xFx com-
pound by Mazin et al [7]. It is believed that supercon-
ductivity here is mediated by spin fluctuations (SF). SF
can lead to triplet superconductivity or singlet one that
changes sign over Fermi Surface. In order to satisfy the
latter criteria it is not essential to have strong angular
anisotropy of the OP (as is true for d-wave superconduc-
tors). It can be, and in this case it is satisfied by isotropic
(s-wave type) pairing potential that has a sign reversal
corresponding to the two Fermi Surfaces that participate
in superconductivity. Although it is also multiband su-
perconductivity, it is in principle different from that seen
in MgB2. Not only is the origin of Cooper pair formation
different, but also the nature of the interaction. Here
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the pairing interaction is repulsive, but pairing, due to
the sign reversal of OP. Similar to d or p-wave pairing,
here also the OP has a nearest neighbour intraorbital
attractive pairing structure in real space, thus reducing
the Coulomb repulsion between pairs. First principles
calculations by Mazin et al [7]; Boeri et al [8]; Cao et
al [9]; Ma et al [10] showed that Fe 3d orbitals contribute
the major spectral weight near the Fermi Surface. The k
space picture reveals the presence of 2 hole circles around
the Γ (0,0) point (involving Fe dxz and dyz bands) and
2 co-centered elliptical electron pockets around the M
(±π,±π) point (formed by hybridization of dxy and dyz
bands). The fermiology in the said LaFeAsO1−xFx com-
pound shows strong but broad AFM spin fluctuation near
M point in the Brillouin zone. The said fluctuations
though are too broad to cause a magnetic instability, are
responsible for generating a superconducting state with
OP of opposite signs on electron and hole pockets.

The pair potential for the hole band is provided by
the electron band and vice versa for this system. Thus
the band with larger DOS near the Fermi Level should
interestingly govern the physics of the system but hold
a smaller gap ! This indicates that the OPs, the critical
temperature Tc and the response to disorder would be
very unconventional indeed.

In order to model Fe-based superconductors, a study
done by Bang et al[11] used a “phenomenological two-
band model” for the system. To represent the appropri-
ate physics in the simplistic possible way they used just
one hole band around Γ and one electron band around
M point. Here two kinds of OP symmetry leading to
sign changing gaps between two bands is possible. One
is the usual i) ± s-wave symmetry and the other is the
ii) double d-wave gap where each band has a d-wave gap
but there is a π phase shift between two bands. Using
similar parameters they showed that the ± s-wave gap
is energetically more favourable and thus more realizable
in systems with FeAs-like gap.
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II. METHODOLOGY

A. Hubbard model for ± s-wave

To analyse the consequence of randomness on a multi-
band ± s-wave superconductor we look into the simplest
model, namely, the two band percolating Cooper-pair in
model system lattices. The corresponding Hamiltonian
is:

H = −
∑
<i,j>

∑
m,m′ ,σ

tim,jm′ c†imσcjm′σ (1)

+
∑
i,m,σ

(εim − µ)nimσ −
∑

<i,j>,m

|Umm(ij)|nim↑njm↓

+
∑
i

∑
m,m′ ,σ,σ′

|Umm′ (i)|c†imσc
†
imσ′ cim′σcim′σ′

In Eqn.1 c†imσ, cimσ are the electronic creation and
annihilation operators for obrbital (band) m, with spin σ
in site depicted by i of a two-dimensional (square) lattice.
The indexm runs over the two bands labeled by s and l, µ
is the chemical potential and εim is the on-site energy at
the site labeled by i in the band m. The hopping integral
tim,jm′ has four components:: a) tis,js = ts is the hopping

integral for s band from i to its nearest neighbour j , b)
til,jl = tl is the hopping integral for l band from a site i to
its nearest neighbour j. The interband hopping intergrals
are c) tis,jl = tijsl is the hopping integral from a site i in
the s band to one of its nearest neighbours j in the l
band (or vice-versa) and d) tis,il = tsl is the interband
hopping integral.

Both intraband and interband interaction is included
in our model Hamiltonian. It is to be noted that the in-
terband interaction term is a pair tunneling term from
the s-band to the l-band. The intraband interaction
[Umm(ij)] is attractive and the interband interaction
[Umm′(i)] is repulsive. The intraband interaction can be
local or non-local (but not sign changing) leading to ±
s-wave superconductivity.

B. Treatment of disorder: Augmented space
formalism

We shall mainly focus on the binary alloy kind of sys-
tems, where a randomness is present on the on-site en-
ergy term. This kind of disorder affects only the diagonal
terms of the Hamiltonian. Let us think of a binary AB
alloy, where A and B are the constituent atoms of the
system with on-site energy εA and εB respectively. We
also introduce a site occupation variable ni which has the
value either 0 or 1. If ni is 1, then site will be occupied
by A atom and if it is 0 then site will be occupied by B.
So on-site energy of the system can be written as,

εi = εAni + εB(1− ni)
= εB + δεni (2)

We shall define disorder strength D as, difference be-
tween on-site energy terms i.e D = (εA−εB). Probability
density of ni for the system can be written as,

p(ni) = xδ(ni − 1) + yδ(ni) (3)

where x and y is the concentration of the A and B atom
in the system respectively. Since ni in this system has
only two values so configuration space (φi) of ni has rank
2. φi spanned by the states |Ai〉 and |Bi〉. In augmented
space formalism we map every random variable ni to a an

operator Ñi such that Ñi acting with φi give probability
density as its spectral density. Spectral density of the
system is given by,

p(ni) = − 1

π
lim
η→0
=〈∅i | [(ni + iη)Ĩ − Ñi]−1 | ∅i〉 (4)

Ñi has the eigenvalues same as the eigenvalues taken
randomly by ni, corresponding to the eigenfunctions | Ai〉
and | Bi〉. Here | ∅i〉 =

√
x | Ai〉+

√
y | Bi〉, is known as

average state. The state associates with one fluctuation
at ith site is given by, |1i〉 =

√
y|Ai〉 −

√
x|Bi〉.

We can represent Ñi in the above basis as,

Ñi = x+ (y − x)γ†i γi +
√
xy(γ†i γi) (5)

ε̃ =<< εi >> +(y − x)δεγ†i γi +
√
xyδε(γ†i + γi) (6)

This is the averaged on-site energy equation for random
disorder in on-site energy.

Substituting the expression of Ñi in equation(6) we
get,

ε̃ =<< εi >> +(y − x)δεγ†i γi +
√
xyδε(γ†i + γi) (7)

This is the averaged on-site energy equation for random
disorder in on-site energy.

III. RESULTS AND DISCUSSIONS

A. Ordered Situation

Now, we will discuss the results on non-random two-
band superconducting systems (for ±s-wave) on square
lattice with both intraband and interband Hubbard in-
teraction. For all the calculations half filling of the states
is maintained for particle-hole symmetry. Also we do not
consider the interband intersite hopping term in this sub-
section.
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For our model Hamiltonian hopping integrals are cho-
sen as: ts = 1.0 and tl = 0.3 for s- and l-band respectively
for nearest neighbour. Inter band hopping is set to zero,
i.e. tsl = 0.0. Partial densities of states (PDOS) for s-
and l-band are shown in Fig. 1(a) for non-interacting
case, i.e. Us = Ul = Usl = 0 for square lattice. The
PDOS shows van Hove singularity in the band center, two
flanking kink singularities and square root singularities at
the band edges which matches with standard calculation
using Blochs’s theorem for ordered square lattice. Band
width of the PDOS of s-band is wider because of bigger
hopping amplitude.
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FIG. 1: Study of superconductivity in an ordered square lat-
tice (a) for non-interacting case, (b) for local ±s-wave paring
and (c) for non-local ±s-wave pairing case.

We proceed to study the system when both intraband
and interband interactions are present. Here intraband
interactions can be local as well as non-local,attractive
and fixed at Us = −3.5 and Ul = −3.5. The interband
interaction is local but nature of the interband interac-
tion should be repulsive in order to observe ±s-wave su-
perconductivity. In Fig. 1(b) PDOS has been shown
for Usl = 2.5 where Us and Ul are local. Superconduct-

ing gap in both the bands signifies superconductivity for
both the channel. This kind of superconductivity sur-
vives when the magnitude of intraband interctions are
bigger than interband interaction. In Fig. 1(c) PDOS
has been shown for Usl = 4.5 where Us and Ul are non-
local. Here also superconductivity can be observed for
both the channel. This kind of superconductivity sur-
vives even when the magnitude of intraband interctions
are smaller than interband interaction.
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FIG. 2: Variation of order parameter with magnitude of in-
terband paring potential (a) for local ±s-wave superconductor
where interband interaction is repulsive, (b) for normal s-wave
superconductor with attractive interband interaction

It will be interesting to study how OP behaves with
interband interaction. Here intraband potential are set
to Us = −3.5, Ul = −3.5. Intraband interactions are re-
stricted to be local. Now interband interaction potential
Usl is varied. Variation of the order parameter with the
magnitude of Usl has been shown in Fig. 2. Usl is re-
pulsive and attractive respectively for Fig. 2(a) and Fig.
2(b). When Usl is repulsive, order parameter for s-band
(∆s) and l-band (∆l) have opposite sign to each other but
their magnitude increases with increase in magnitude of
interaction potential Usl. Both order parameter become
positive when Usl is switched to be attractive. For both
the cases magnitude of (∆s) and (∆l) do not change.

B. Substitutionally Disordered Situation

We shall now consider two-band attractive Hubbard
model for a binary substitutional alloy on a square lat-
tice. Randomness in the onsite energy will be consid-
ered for s- or l-band, then we shall see how this random-
ness affect our system. We shall introduce randomness
in our model Hamiltonian using Eqn. 6. Concentration
is fixed at x = y = 0.5. To start with we shall dis-
cuss the effect of randomness for non-interacting case,
.i.e. Us = Ul = Usl = 0. We keep the hopping integral
ts = 1.0 and tl = 0.3 for the calculation. The disorder
strength is defined as Dm = |εAm − εBm|, where m can be
s- or l-band and εAm(εBm) be the onsite energy for A(B)
atom for a band m. PDOS of s- and l-band are shown
in Figure 3(a) and Figure 3(b) respectively for different
disorder strength. As disorder is increased we see the
formation of a wedge in the PDOS corresponding to a
split-band regime. Now we shall consider intercating case
where all intercation potentials are set to non zero values.
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FIG. 3: DOS for different values of disorder strength
(a)and(b) for non-interacting s- and l-band. (c)and (d) for lo-
cal ±s-wave superconductor for s- and l-band. (e) and (f)for
non-local ±s-wave superconductor for s- and l-band

Here we set intraband interaction to Us = Ul = −3.5, in-
traband interation potential is considered be local here.
Interband interaction potential is set to be repulsive with
Usl = 2.5. PDOS for s- and l-band are shown in Fig. 3(c)
and Fig. 3(d) respectively. Superconductivity survives
with increasing disorder strength as OP reduces with in-
creasing value of disorder strength. At higher disorder
strength slight expansion of superconducting gap can be
seen in l-DOS because of the split-band effect.

The effect of randomness of the interband intersite
pairing amplitude tijsl for systems with local +/- s-wave
pairing is also studied. Here Us=Ul=-3.5(attractive)
and Usl=1.25 (repulsive). The intraband inter site hop-
ping amplitudes ts=1.0 and tl=0.75. In Fig 4 (a)

tij asl =tij bsl =0.9 and tij absl =0.2 in all the cases except for
the D=0 case. In the D=0 case the system has no ran-

domness. Here tij asl =tij bsl =tij absl =0.55 so that the aver-
age value of tslij is the same in all the cases. We see
that when we put in randomness in tslij and increase the
diagonal disorder D after a certain point the gap in the
DOS closes up just like when we put in diagonal disorder
in a d-wave superconductor. In (b) we take a zoomed in
view of this closing up of the gap with disorder. In (c)

and (d) we have tij asl =tij bsl =0.9 and tij absl =0.2. So there

is randomness in tijsl. But here D=0.5, so we have not
yet reached the limit where the system behaves like a d-
wave superconductor with disorder. We keep the onsite
interband hopping amplitude for A species (tasl) fixed at
0.6 and vary tbsl from 0.1 to 0.6 . While decreasing ran-
domness in tsl tries to increase the order parameters, the
increase in the resultant average tsl tries to decrease the

order parameters ∆s and ∆l. So it is a competition be-
tween these two phenomenon that decides the behaviour
of ∆s and ∆l.
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FIG. 4: (a) DOS of a non-local ±s-wave superconductor with
random tijsl, (b) zoomed view of the superconducting gap, (c)
and (d) variation of order parameter for s- and l-band respec-
tively with random tijsl

.

IV. SUMMARY AND CONCLUSIONS

In the present communication we present a real space
approach to analyse the consequence of substitutional
disorder on a model multi band (orbital) superconducting
system in real space. While the inter-orbital pairing is re-
pulsive, the intra-orbital coupling is attractive. We have
looked into what happens if the intra-orbital coupling
is local and non-local (but without angular isotropy).
For repulsive inter-orbital pairing there is a sign change
of the order parameter phase between the bands which
leads to pairing of electrons by pair tunneling phenom-
ena. We have studied the effect of disorder in various
situations. Randomness has been investigated in sub-
stitutionally disordered alloys where a) randomness is
present only in the on-site energy (chemical disorder) and
b) randomnes is present only in the hopping interactions.
For ordered systems two gapped situation is got in the
presence of interband pairing. Only in the case where in-
traband pairing potential is non local then superconduc-
tivity survives when the repulsive interband potential is
stronger than the attractive intraband pairing potential.
The gap in one of the bands in this case is determined
by the hopping integral of the other band. While ran-
domness in the on-site energy (chemical disorder depicted
by disorder strength D as defined earlier) alone can not
kill superconductivity in the system, a combined effect
of randomness of the interband intersite pairing poten-
tial tijsl and on-site energy kills superconductivity. Thus
such disorder takes us to a regime beyond the validity of
Anderson’s theorem [12].
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K. W. Kim, C. Baines, and C. Bernhard, Nature Mater.
8, 310 (2009).

[6] J. Zhao, Q.Huang, C. de la Cruz, S. Li, J. W. Lynn, Y.
Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo,
N. L. Wang, and P. Dai, Nature Mater. 7, 953 (2008).

[7] I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du,
Phys. Rev. Lett. 101, 057003 (2008).

[8] L. Boeri, O. V. Dolgov, and A. A. Golubov, Phys. Rev.
Lett. 101, 26403 (2008).

[9] C. Cao, P. J. Hirschfeld, and H. P. Cheng, Phys. Rev. B
77, 220506(R) (2008).

[10] F. J. Ma, Z. Y. Lu, and T. Xiang, Front. Phys. Chem 5,
2095 (2010).

[11] Y. Bang and H-Y. Choi Phys. Rev. B 78, 134523 (2008).
[12] P.W.Anderson, J.Phys.Chem.Solids 11 26 (1959).

AJPSA, Vol 1, Issue 1, 2019

American Journal of Physical Sciences and Applications

9


